# Критерии оценивания заданий с развернутым ответом

## Вариант МА90003

Модуль «Алгебра»

21 Решите неравенство  $\frac{-12}{x^2 - 5x - 6} \le 0$ .

## Решение.

$$\frac{-12}{x^2 - 5x - 6} \le 0; \quad \frac{-12}{(x - 6)(x + 1)} \le 0.$$

Решаем неравенство методом интервалов:  $x \neq 6$ ,  $x \neq -1$ .

Получим 
$$x \in (-\infty; -1) \cup (6; +\infty)$$
.

Ombem:  $(-\infty; -1) \cup (6; +\infty)$ .

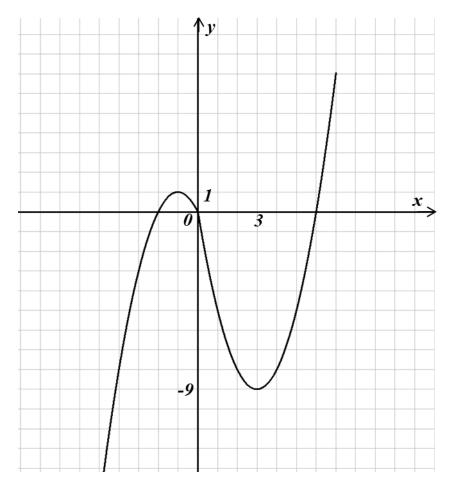
| Баллы | Критерии оценки выполнения задания                                          |  |
|-------|-----------------------------------------------------------------------------|--|
| 2     | Правильно выполнены преобразования, получен верный ответ                    |  |
| 1     | Решение доведено до конца, но допущена ошибка вычислительного характера или |  |
|       | описка, с её учетом дальнейшие шаги выполнены верно                         |  |
| 0     | Другие случаи, не соответствующие указанным выше критериям                  |  |
| 2     | Максимальный балл                                                           |  |

22 Свежие фрукты содержат 88% воды, а высушенные — 30%. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?

## Решение.

Заметим, что сухая часть свежих фруктов составляет 12%, а высушенные — 30%. Значит, для приготовления 72 кг высушенных фруктов требуется  $\frac{70}{12} \cdot 72 = 420$  кг свежих.

Ответ: 420 кг.


| Баллы | Критерии оценки выполнения задания                                  |  |  |  |
|-------|---------------------------------------------------------------------|--|--|--|
| 2     | Правильно составлена математическая модель, получен верный ответ    |  |  |  |
| 1     | Правильно составлена математическая модель, но при решении допущена |  |  |  |
|       | вычислительная ошибка, с её учетом решение доведено до ответа       |  |  |  |
| 0     | Другие случаи, не соответствующие указанным критериям               |  |  |  |
| 2     | Максимальный балл                                                   |  |  |  |

Постройте график функции y = |x|(x-2)-4x и определите, при каких значениях m прямая y = m имеет с графиком ровно две общие точки.

## Решение.

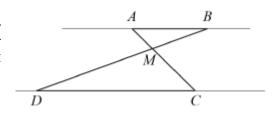
Раскрывая модуль, получаем, что график функции совпадает с графиком кусочно-заданной функции  $y = \begin{cases} x^2 - 6x, & ecnu \ x \ge 0, \\ -x^2 - 2x, & ecnu \ x < 0. \end{cases}$ 

График изображен на рисунке.



Прямая y = m имеет с построенным графиком ровно две общие точки при m = -9 u m = 1.

Ответ:  $m = -9 \ u \ m = 1$ .


|                                                                  | Баллы | Критерии оценивания выполнения задания                                                                                        |  |
|------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------|--|
| 2 График построен правильно, верно указаны все значения <i>m</i> |       | График построен правильно, верно указаны все значения т                                                                       |  |
|                                                                  | 1     | График построен правильно, указаны не все верные значения <i>т</i> Другие случаи, не соответствующие указанным выше критериям |  |
| Γ                                                                | 0     |                                                                                                                               |  |
| 2 Максимальный балл                                              |       | Максимальный балл                                                                                                             |  |

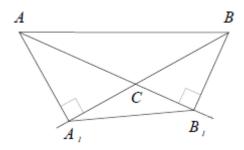
## Модуль «Геометрия»

Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB = 16, DC = 24, AC = 25.

## Решение.

Углы DCM и BAM равны как накрест лежащие, углы DMC и BMA равны как вертикальные, следовательно, треугольники DMC и BMA подобны по двум углам. Значит,  $\frac{AM}{MC} = \frac{AB}{CD} = \frac{16}{24} = \frac{2}{3}$ . Следовательно,  $AC = AM + MC = \frac{2}{3}MC + MC = \frac{5}{3}MC$ , откуда  $MC = \frac{3AC}{5} = 15$ .

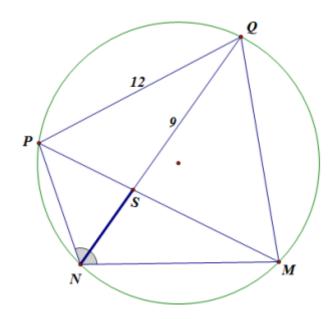



Ответ: 15.

| Баллы | Критерии оценивания выполнения задания                                     |  |
|-------|----------------------------------------------------------------------------|--|
| 2     | Получен верный обоснованный ответ                                          |  |
| 1     | При верных рассуждениях допущена вычислительная ошибка, возможно приведшая |  |
|       | к неверному ответу                                                         |  |
| 0     | Другие случаи, не соответствующие указанным критериям                      |  |
| 2     | Максимальный балл                                                          |  |

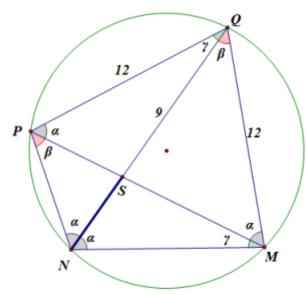
В треугольнике ABC с тупым углом ACB проведены высоты  $AA_1$  и  $BB_1$ . Докажите, что треугольники  $A_1CB_1$  и ACB подобны.

## Доказательство.


Поскольку угол ACB тупой, основания высот  $A_1$  и  $B_1$  будут лежать на продолжениях сторон BC и AC соответственно. Диагонали четырёхугольника  $AA_1B_1B$  пересекаются, поэтому он выпуклый. Поскольку  $\angle AA_1B = \angle AB_1B = 90^\circ$ , то около четырёхугольника  $AA_1B_1B$  можно описать окружность. Тогда углы  $\angle AB_1A_1$  и  $\angle ABA_1$  равны как вписанные углы, опирающиеся на дугу  $A_1A$ . Аналогично,  $\angle BA_1B_1 = \angle BAB_1$ . Значит, указанные треугольники подобны по двум углам.



| Баллы | Критерии оценивания выполнения задания                |  |
|-------|-------------------------------------------------------|--|
| 2     | 2 Доказательство верное, все шаги обоснованы          |  |
| 1     | Доказательство в целом верное, но содержит неточности |  |
| 0     | Другие случаи, не соответствующие указанным критериям |  |
| 2     | Максимальный балл                                     |  |


В выпуклом четырёхугольнике *NPQM* диагональ *NQ* является биссектрисой угла *PNM* и пересекается с диагональю *PM* в точке *S*. Найдите *NS*, если известно, что около четырёхугольника *NPQM* можно описать окружность, PQ = 12, SQ = 9.

#### Решение.



Докажем, что треугольники *QSM* и *NQM* подобны по двум углам.

Обозначим равные углы одинаковыми буквами:



 $\angle PNQ = \angle QNM$ , так как NQ - биссектриса.

Следовательно, дуга PQ равна дуге QM, и равны соответствующие

хорды: 
$$PQ = QM = 12$$
.

Тогда  $\angle MPQ = \angle PMQ$  как вписанные углы, опирающиеся на равные дуги.

Тогда треугольники *QSM* и *NQM* подобны по двум углам.

Запишем отношения соответственных сторон:

$$\frac{QM}{QS} = \frac{QN}{QM}, \qquad \frac{12}{9} = \frac{QN}{12}.$$

$$Omcюдa \quad QN = \frac{144}{9} = 16.$$

$$NS = NQ - QS = 16 - 9 = 7.$$

Ответ: 7.

| Баллы | Критерии оценивания выполнения задания                                     |  |  |
|-------|----------------------------------------------------------------------------|--|--|
| 2     | Ход решения верный, все его шаги выполнены правильно, получен верный ответ |  |  |
| 1     | Ход решения верный, чертеж соответствует условию задачи, но пропущены      |  |  |
|       | существенные объяснения или допущена вычислительная ошибка                 |  |  |
| 0     | Другие случаи, не соответствующие указанным критериям                      |  |  |
| 2     | Максимальный балл                                                          |  |  |

| HOMEPA | ОТВЕТЫ        |
|--------|---------------|
| 1      | 2,7           |
| 2      | 3             |
| 3      | 2,7<br>3<br>4 |
| 4      | -1            |
| 5      | 3             |
| 6      | 2             |
| 7      | 1,5           |
| 8      | 1             |
| 9      | 8             |
| 10     | 3             |
| 11     | 6             |
| 12     | 0,75          |
| 13     | 12            |
| 14     | 53 550        |
| 15     | -6            |
| 16     | 420           |
| 17     | 150           |
| 18     | 23            |
| 19     | 0,5           |
| 20     | 9             |